PUBLICATIONS

2020
 

A comparative perspective of electrochemical and photochemical approaches for catalytic H2O2 production, Y. Sun, L. Han and P. Strasser, Chem. Soc. Rev., 2020, Advance Article, - DOI 10.1039/D0CS00257G - OPEN ACCESS

Abstract: Hydrogen peroxide (H2O2) has a wide range of important applications in various fields including chemical industry, environmental remediation, and sustainable energy conversion/storage. Nevertheless, the stark disconnect between today’s huge market demand and the historical unsustainability of the currently-used industrial anthraquinone-based production process is promoting extensive research on the development of efficient, energy-saving and sustainable methods for H2O2 production. Among several sustainable strategies, H2O2 production via electrochemical and photochemical routes has shown particular appeal, because only water, O2, and solar energy/electricity are involved during the whole process. In the past few years, considerable efforts have been devoted to the development of advanced electrocatalysts and photocatalysts for efficient and scalable H2O2 production with high efficiency and stability. In this review, we compare and contrast the two distinct yet inherently closely linked catalytic processes, before we detail recent advances in the design, preparation, and applications of different H2O2 catalyst systems from the viewpoint of electrochemical and photochemical approaches. We close with a balanced perspective on remaining future scientific and technical challenges and opportunities.

Establishing reactivity descriptors for platinum group metal (PGM)-free Fe–N–C catalysts for PEM fuel cells, M. Primbs, Y. Sun, A. Roy, D. Malko, As. Mehmood, M.-T. Sougrati, P.-Y. Blanchard, G. Granozzi, T. Kosmala, G. Daniel, P. Atanassov, J. Sharman, C. Durante, A. Kucernak, D. Jones, F. Jaouen and P. Strasser, Energy Environ. Sci., 2020, Advance Article, - DOI 10.1039/D0EE01013H - OPEN ACCESS

Abstract: We report a comprehensive analysis of the catalytic oxygen reduction reaction (ORR) reactivity of four of today's most active benchmark platinum group metal-free (PGM-free) iron/nitrogen doped carbon electrocatalysts (Fe–N–Cs). Our analysis reaches far beyond previous such attempts in linking kinetic performance metrics, such as electrocatalytic mass-based and surface area-based catalytic activity with previously elusive kinetic metrics such as the active metal site density (SD) and the catalytic turnover frequency (TOF). Kinetic ORR activities, SD and TOF values were evaluated using in situ electrochemical NO2 reduction as well as an ex situ gaseous CO cryo chemisorption. Experimental ex situ and in situ Fe surface site densities displayed remarkable quantitative congruence. Plots of SD versus TOF (“reactivity maps”) are utilized as new analytical tools to deconvolute ORR reactivities and thus enabling rational catalyst developments. A microporous catalyst showed large SD values paired with low TOF, while mesoporous catalysts displayed the opposite. Trends in Fe surface site density were linked to molecular nitrogen and Fe moieties (D1 and D2 from 57Fe Mössbauer spectroscopy), from which pore locations of catalytically active D1 and D2 sites were established. This cross-laboratory analysis, its employed experimental practices and analytical methodologies are expected to serve as a widely accepted reference for future, knowledge-based research into improved PGM-free fuel cell cathode catalysts.

Stable, Active and Methanol Tolerant PGM-free Surface in Acidic Medium: Electron Tunneling at Play in Pt/FeNC Hybrid Catalysts for Direct Methanol Fuel Cell Cathode, T. Kosmala, N. Bibent, M.-T. Sougrati, G. Drazic, S. Agnoli, F. Jaouen, and G. Granozzi, ACS Catal. Online June 10, 2020, - DOI 10.1021/acscatal.0c01288

Abstract: PGM-free catalysts have high initial activity for O2 reduction reaction, but suffer from low stability in acid medium in PEMFC and DMFC. Here, we shed light on the atomic-scale structure of hybrid Pt/FeNC catalysts (1-2 wt% of Pt), revealing by STEM and EDXS the presence of Pt@FeOx particles. The absence of exposed Pt on the surface is confirmed by the suppression of methanol oxidation reaction and CO stripping experiments. The promising application of such Pt/FeNC catalysts, comprising FeNx sites and Pt@FeOx particles, is demonstrated at the cathode of DMFC. To gain fundamental understanding on the stability in acid medium and on the intrinsic ORR activity of Pt@FeOx, we constructed model surfaces by depositing FeOx films with controlled thickness (from 1.0 to 6.4 nm), fully covering the Pt(111) surface, which resulted stable in acid medium in the potential range 0.45 – 1.05 V vs. RHE. The specific ORR activity of Fe2O3/Pt(111) increases exponentially with decreasing overlayer thickness, which is explained by the tunneling of Pt electrons through Fe2O3. This special phenomenon sheds light onto recently reported excellent durability of Pt/FeNC composites in PEMFC and identify a promising core@shell strategy leading to stable PGM-free surfaces in acid medium, and tolerant to methanol.

Noncovalent Integration of a Bioinspired Ni Catalyst to Graphene Acid for Reversible Electrocatalytic Hydrogen Oxidation, B. Reuillard, M. Blanco, L. Calvillo, N. Coutard, A. Ghedjatti, P. Chenevier, S. Agnoli, M. Otyepka, G. Granozzi and V. Artero, ACS Appl. Mater. Interfaces 2020 - DOI 10.1021/acsami.9b18922- OPEN ACCESS

Abstract: Efficient heterogeneous catalysis of hydrogen oxidation reaction (HOR) by platinum group metal (PGM)-free catalysts in proton-exchange membrane (PEM) fuel cells represents a significant challenge toward the development of a sustainable hydrogen economy. Here, we show that graphene acid (GA) can be used as an electrode scaffold for the noncovalent immobilization of a bioinspired nickel bis-diphosphine HOR catalyst. The highly functionalized structure of this material and optimization of the electrode-catalyst assembly sets new benchmark electrocatalytic performances for heterogeneous molecular HOR, with current densities above 30 mA cm–2 at 0.4 V versus reversible hydrogen electrode in acidic aqueous conditions and at room temperature. This study also shows the great potential of GA for catalyst loading improvement and porosity management within nanostructured electrodes toward achieving high current densities with a noble-metal free molecular catalyst.

2019
 

Accurate Evaluation of Active-Site Density (SD) and Turnover Frequency (TOF) of PGM-Free Metal−Nitrogen-Doped Carbon (MNC) Electrocatalysts using CO Cryo Adsorption, F. Luo, C. H. Choi, M. J.M. Primbs, W. Ju, S. Li, N. D. Leonard, A. Thomas, F. Jaouen and P. Strasser, ACS Catal. 2019, 9, 4841−4852 - DOI 10.1021/acscatal.9b00588 - HAL repository

Abstract: The number of catalytically active sites (site density, SD) and the catalytic turnover frequency (TOF) are critical for meaningful comparisons between catalytic materials and their rational improvement. SD and TOF numbers have remained elusive for PGM-free, metal/nitrogen-doped porous carbon electrocatalysts (MNC), in particular, FeNC materials that are now intensively investigated and widely utilized to catalyze the oxygen reduction reaction (ORR) in fuel cell cathodes. Here, we apply CO cryo sorption and desorption to evaluate SD and TOF numbers of a state-of-art FeNC ORR electrocatalyst with atomically dispersed coordinative FeNx (x ≤ 4) sites in acid and alkaline conditions. More specifically, we study the impact of thermal pretreatment conditions prior to assessing the number of sorption-active FeNx sites. We show that the pretreatment temperature sensitively affects the CO sorption uptake through a progressive thermal removal of airborne adsorbates, which, in turn, controls the resulting catalytic SD numbers. We correlate CO uptake with CO desorption and analyze the observed temperature-programmed desorption characteristics. The CO uptakes increased from 45 nmol·mg–1catalyst at 300 °C cleaning to 65 nmol·mg–1catalyst at 600 °C cleaning, where it leveled off. These values were converted into apparent SD values of 2.7 × 1019 to 3.8 × 1019 surface sites per gram catalyst. Because of similar ORR activity of the pristine catalyst and of the sample after 600 °C cleaning step, we conclude that the nature and number of surface FeNx sites remained largely unaffected up to 600 °C and that cleaning to less than 600 °C was insufficient to free the sites from previously adsorbed species, completely or partially impeding CO adsorption. Cleaning beyond that temperature, however, led to undesired chemical modifications of the FeNx moieties, resulting in higher TOF. In all, this study identifies and recommends a practical and useful protocol for the accurate evaluation of catalytic SD and TOF parameters of PGM-free ORR electrocatalyst, which enables a more rational future catalyst development and improvement.
PDF

Understanding Active Sites in Pyrolyzed Fe−N−C Catalysts for Fuel Cell Cathodes by Bridging Density Functional Theory Calculations and 57Fe Mössbauer Spectroscopy, T. Mineva, I. Matanovic, P. Atanassov, M.-T. Sougrati, L. Stievano, M. Clémancey, A. Kochem, J.-M. Latour, and F. Jaouen,  ACS Catalysis 2019 9 (10), 9359-9371 - DOI 10.1021/acscatal.9b02586 - HAL repository

Abstract: Pyrolyzed Fe–N–C materials are promising platinum-group-metal-free catalysts for proton-exchange membrane fuel cell cathodes. However, the detailed structure, oxidation, and spin states of their active sites are still undetermined. 57Fe Mössbauer spectroscopy has identified FeNx moieties as the most active sites, with their fingerprint being a doublet in low-temperature Mössbauer spectra. However, the interpretation of the doublets for such materials has lacked theoretical basis. Here, we applied density functional theory to calculate the quadrupole splitting energy of doublets (ΔEQS) for a range of FeNx structures in different oxidation and spin states. The calculated and experimental values are then compared for a reference Fe–N–C catalyst, whereas further information on the Fe oxidation and spin states was obtained from electron paramagnetic resonance, superconducting quantum interference device, and 57Fe Mössbauer spectroscopy under external magnetic field. The combined theoretical and experimental results identify the main presence of FeNx moieties in Fe(II) low-spin and Fe(III) high-spin states, whereas a minor fraction of sites could exist in the Fe(II) S = 1 state. From the analysis of the 57Fe Mössbauer spectrum under the external magnetic field and the comparison of calculated and measured ΔEQS values, we assign the experimental doublet D1 with a mean ΔEQS value of around 0.9 mm·s–1 to Fe(III)N4C12 moieties in high-spin state and the experimental doublet D2 with a mean ΔEQS value of around 2.3 mm·s–1 to Fe(II)N4C10 moieties in low and medium spin. These conclusions indicate that D1 corresponds to surface-exposed sites, whereas D2 may correspond either to bulk sites that are inaccessible to O2 or to surface sites that bind O2 weaker than D1.

 
2018
 

Toward Platinum Group Metal-Free Catalysts for Hydrogen/Air Proton-Exchange Membrane Fuel Cells, Jaouen, F.; Jones, D.; Coutard, N.; Artero, V.; Strasser, P.; Kucernak, A.  Johnson Matthey Technology Review, Volume 62, Number 2, 1 April 2018, pp. 231-255(25) - DOI 10.1595/205651318X6968288 - HAL repository - OPEN ACCESS

Abstract: The status, concepts and challenges toward catalysts free of platinum group metal (pgm) elements for proton-exchange membrane fuel cells (PEMFC) are reviewed. Due to the limited reserves of noble metals in the Earth’s crust, a major challenge for the worldwide development of PEMFC technology is to replace Pt with pgm-free catalysts with sufficient activity and stability. The priority target is the substitution of cathode catalysts (oxygen reduction) that account for more than 80% of pgms in current PEMFCs. Regarding hydrogen oxidation at the anode, ultralow Pt content electrodes have demonstrated good performance, but alternative non-pgm anode catalysts are desirable to increase fuel cell robustness, decrease the H2 purity requirements and ease the transition from H2 derived from natural gas to H2 produced from water and renewable energy sources.
PDF


We use cookies to improve our website and your experience when using it. Cookies used for the essential operation of this site have already been set. To find out more about the cookies we use and how to delete them, see our privacy policy. I accept cookies from this site. To find out more about the cookies we use and how to delete them, see our privacy policy.

  I accept cookies from this site.
EU Cookie Directive plugin by www.channeldigital.co.uk